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Abstract. A designed visual geometry group (VGG)-based convolutional neural network (CNN) model
with small computational cost and high accuracy is utilized to monitor pulse amplitude modulation-based
intensity modulation and direct detection channel performance using eye diagram measurements.
Experimental results show that the proposed technique can achieve a high accuracy in jointly monitoring
modulation format, probabilistic shaping, roll-off factor, baud rate, optical signal-to-noise ratio, and chromatic
dispersion. The designed VGG-based CNN model outperforms the other four traditional machine-learning
methods in different scenarios. Furthermore, the multitask learning model combined with MobileNet CNN
is designed to improve the flexibility of the network. Compared with the designed VGG-based CNN, the
MobileNet-based MTL does not need to train all the classes, and it can simultaneously monitor single
parameter or multiple parameters without sacrificing accuracy, indicating great potential in various monitoring
scenarios.
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1 Introduction
To meet ever-growing demands for high-capacity optical com-
munication, data centers (DCs) have gradually become the key
technology for a myriad of network applications.1–3 Compared
to coherent optical systems, intensity modulation and direct
detection (IMDD) of multilevel pulse amplitude modulation
(PAM) formats utilize an architecture that is more power-
efficient and easy to implement, providing a suitable choice
for 100G, 400G intra- and inter-DC networks.4–8 Currently,
various pluggable transceivers based on IMDD and multilevel
PAM have been deployed in intra-DC short reach (SR)/long

reach (LR) applications.9,10 In 2020, the industry’s first silicon
photonics 100G PAM4 dense wavelength division multiplexing
solution was commercially available. Using two-wavelength
25 GBd PAM4 signals, it can support 80-km transmission dis-
tance and 4 Tb∕s communication speed for inter-DC networks.11

The industry will then be likely marching toward higher level
PAM signals, such as PAM-6 or even PAM-8.12–15 However, as it
is intensity-only modulation, an IMDD system has relatively
low spectral efficiency (SE), making it difficult to further
improve the capacity within limited bandwidth. Alternatively,
coherent optical communication re-emerged for practical appli-
cations in the early 20th century for high SE transmission,
which can provide higher sensitivity and bit rates, and may be
used for intra-and inter-DC applications in the near future.16–18*Address all correspondence to Yang Yue, yueyang@xjtu.edu.cn
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However, compared with the IMDD, the sensitivity improve-
ment of the coherent technique is at the cost of an additional
local oscillator, more complex modulation structures, and higher
bit rates at a single wavelength are attributed to more modula-
tion dimensions.

In order to utilize bandwidth resources more efficiently, the
wavelength division multiplexing (WDM) system combined
with IMDD is widely used in today’s DC networks to enlarge
the data-carrying capacity.19,20 Figure 1 shows the structure of
both the intra- and inter-DC systems based on WDM-IMDD
with eye diagram monitoring using machine learning (ML). The
monitor nodes are usually implemented on the transmitter side
or in front of the receiver. On the transmitting side, the nodes
focus on monitoring the launch power, transmitting optical
signal-to-noise ratio (OSNR), signal modulation format (MF),
baud rate (BR), and other characteristics to ensure the quality
of the generated signal. As for the receiver side, in addition
to the relevant parameters of the received signal, the impact
of various impairments in the channel has attracted more
attention, including dispersion, nonlinear effects, the received
OSNR affected by the noise figure of the amplifiers, etc. Eye
diagrams of one wavelength channel can be collected through
a tunable bandpass filter (TBPF) and digital communication
analyzer (DCA). The collected images could then be uploaded
to the network cloud, and then the ML methods are utilized to
perform multiparameter joint monitoring based on the input im-
ages. Afterward, the software-defined networking controller can
provide the feedback information to the channel under monitor-
ing in time, so that it can adapt to the link and environmental
changes for better performance.

In such a high-capacity and complex system, many param-
eters need to be monitored in real time. On the one hand, some
channel impairments and characteristics need to be monitored to
provide appropriate compensation. On the other side, the current

real optical networks are increasingly dynamic and reconfigur-
able, so flexible signal parameter monitoring is also necessary to
improve network reliability.21,22 First of all, in order to use an
adaptive MF according to the transmission conditions, a suitable
MF identification is needed.23 The Nyquist shaping with differ-
ent roll-off factors (ROFs) is usually applied to alleviate the
bandwidth requirement of electrical and optical components,24,25

while probabilistic shaping (PS) distribution schemes26–28 and
forward error correction (FEC) coding with different FEC
overheads (OHs) are used for enhancing the tolerance to the
OSNR.29–31 Low OSNR always limits the performance of optical
links, and channel impairments, such as chromatic dispersion
(CD), could severely distort the signal. Therefore, an accurate
and powerful monitoring scheme that can help identify and
optimize the optical network would be essential.

Deep learning (DL), as a branch of the ML methods based on
deep neural networks, has attracted widespread interest over the
past few years in optical performance monitoring (OPM).32,33

With the ability of feature extraction and self-learning, convolu-
tional neural network (CNN)-based DL can directly process
images, such as eye diagrams,34,35 constellation diagrams,36–38

amplitude histograms,39,40 and asynchronous delay tap plots.41

A constellation diagram is typically obtained by coherent
detection, which requires complex hardware. The hardware for
acquiring the asynchronous amplitude histogram is relatively
simple, and it mainly contains statistical information on the
amplitude of the signal within a period of time. Therefore,
it is often used for signal OSNR estimation. At the same time,
because it contains fewer features of the signal, it is also used for
relatively simple classification tasks, such as MF classification.
In asynchronous delay tap sampling plots, there is a time delay
between two electrical lines before ADC. The time delay is usu-
ally equal to 0.5 or 0.25 time periods of the symbol interval,
meaning that the BR of the signal needs to be obtained in

Fig. 1 Conceptual diagram of multiparameter performance monitoring of PAM signals in intra- and
inter-data center systems. DAC, digital-to-analog converter; IM, intensity modulator; PD, photo-
diode; ADC, analog-to-digital converter; TBPF, tunable bandpass filter; SDN, software-defined
networking; ROF, roll-off factor; OSNR, optical signal-to-noise ratio; CD, chromatic dispersion.
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advance. By contrast, an eye diagram seems to be a suitable way,
using low-speed direct detection together with clock recovery.
Eye diagrams contain plentiful features of the original digital
data and do not require a more complex receiving structure, such
as the constellation diagram. For instance, the clock jitter, the
rise and fall time, and the noise level of the optical signal could
be analyzed from the eye diagram. At the same time, compared
to an asynchronous amplitude histogram, an eye diagram uses
one more degree of freedom (time). Therefore, it can better
identify parameters in the time domain, such as BR. Generally
speaking, the original eye diagram contains enough features for
the following classification networks, and there is no need to
perform digital signal processing (DSP) on the signal in advance
to reduce the impairments. This also shortens the time to acquire
an image of an eye diagram, giving it the potential for real-time
monitoring.

Previous works have demonstrated that CNN-DL can per-
form OPM from featured images, such as transmitter and
dispersion eye closure for PAM4 (TDECQ) estimation,42 OSNR
estimation,43,44 MF recognition,45 and bit-rate identification.46,47

However, the above demonstrations focus more on channel im-
pairments and MFs, and little joint monitoring of digital signal
parameters. Meanwhile, most of them are aiming for coherent
optical channels and can only jointly monitor a few parameters.
To pursue more efficient dynamic optical IMDD-based DC net-
works, various digital shaping technologies, especially PS and
Nyquist shaping, will gradually play important roles in indus-
trial applications. Therefore, simultaneously monitoring both
digital signal parameters and optical link parameters will be
necessary. Moreover, due to the urgent demand of applications,
such as emerging large-scale cloud computing and high-defini-
tion videos, passive optical networks gradually become key
parts in optical transmission links for providing broadband
connectivity. The protection and monitoring of optical line ter-
minal and optical network unit are also much-needed issues.48,49

Optical monitoring capabilities can be used to enable new ways
of managing traffic. For example, routing decisions based on
performance monitoring is a possibility. By monitoring the
channel quality and link security and constantly updating the
routing lookup table, the traffic with large capacity and priority
can be dynamically adjusted to the high-performance optical
channel so as to ensure that the data channel reaches an accept-
able BER, and the whole network achieves sufficient transmis-
sion and protection capacity.50

In this paper, we demonstrate joint monitoring of a PAM-
based IMDD channel for six parameters of digital signal and
optical link (MF, BR, PS, ROF, OSNR, and CD) using CNN-
based DL and eye diagrams on the receiver side. Here, a visual
geometry group (VGG)-based CNN model with less computa-
tional cost is designed and optimized for much more efficient
classification. The experimental results indicate that the de-
signed VGG-based CNN outperforms the other three tradi-
tional ML methods, including support vector machines (SVMs),
k-nearest neighbors (KNNs), decision trees (DTs), and gradient-
boosted decision trees (GBDTs).51–54 A high prediction accuracy
of 97.16% is achieved for jointly monitoring up to six parameters
including 3 to 8-ary PAM, 25 to 27 GBd BR, 0.8 to 1 PS coding
rate, 0.1 to 0.5 ROF, 25 to 40 dB OSNR, and −120 to 0 ps∕nm
CD. Moreover, the VGG-based CNN shows the stability of
monitoring, with the highest accuracy greater than 96% in
different scenarios, providing the possibility of dynamically
monitoring and optimizing channel performance.

Furthermore, the other three modern CNN networks are also
compared with the designed VGG-based model, including
ResNet-18, MobileNetV3, and EfficientNetV2. All of them
can achieve >96% accuracy. By contrast, the proposed VGG-
based model with fewer layers has smaller memory usage,
and the lightweight MobileNetV3 has fewer parameters and
floating-point operations per second (FLOPs) using mobile
inverted bottleneck convolutional (MBConv). Both are more
cost-efficient and resource-friendly for channel monitoring of
IMDD-based DC networks. Meanwhile, we also noticed that
EfficientNetV2 has the potential to achieve higher accuracy
through an optimized combination of MBConv and Fused-
MBConv, which also provides ideas for using fewer resources
to achieve higher monitoring accuracy of PAM-based commu-
nication.

Finally, a multitask learning (MTL) model combined with
MobileNetV3 is further designed, and the output neurons of
six-parameter joint monitoring in MTL could be reduced from
1728 to 21. The MTL model can not only carry out joint
monitoring of multiple parameters but also monitor each single
parameter separately at the same time. Compared with the other
CNN methods, the accuracy of MTL could also be achieved
above 95% in various monitoring tasks without training all
1728 classes.

The rest of the paper is organized as follows: In the next
section, the optical experimental setup of PAM-based trans-
mission and the used ML algorithms are introduced. Next,
the results of ML and the VGG-based CNN are compared.
Furthermore, the four modern CNN models mentioned above
are discussed, including their accuracy and computational re-
sources. Furthermore, the performance of MTL combined with
CNN is investigated and discussed in detail. Finally, a conclu-
sion is made for multiparameter performance monitoring of
PAM channels using CNN.

2 Experimental Setup and Methods

2.1 Optical Experimental Transmission Link

The experimental setup shown in Fig. 2(a) is used to capture
the eye diagrams of the PAM-based IMDD channel with differ-
ent parameters related to both the digital signal (BR, ROF, MF,
and PS) and optical link (OSNR and CD). In the offline DSP,
PS coding and Nyquist shaping are performed in sequence to
change the number of bits per symbol and the ROF. The sam-
pling rate of the digital-to-analog converter (DAC) used here is
up to 96 GSamples∕s. For the 25 to 27 GBd signals that need
to be monitored in this work, it could perform upsampling by
up to 3 times, corresponding to a sampling rate of 75 to
81 GSamples∕s. Therefore, to better perform Nyquist shaping
and consider the limitation of the DAC, a threetime upsam-
pling is adopted for different BRs. Meanwhile, the pre-equali-
zation based on feed-forward equalization with seven taps is
utilized for various BRs, and then the predistortion is also used
to compensate for the nonlinearity introduced by E/O devices,
such as an intensity modulator. The processed data are then
sent to a 20 GHz DAC.

As for the optical link, a flat noise is achieved from the am-
plified spontaneous emission (ASE) noise source filtered by
TBPF1, then amplified by an erbium-doped fiber amplifier
(EDFA1). The center of the noise is at the wavelength of coher-
ent transmitter and its spectral width is 1.5 nm. The noise can be
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adjusted through a variable optical attenuator (VOA1) to con-
trol the OSNR values in the channel. In addition, a tunable
dispersion compensation module (TDCM) is used in the trans-
mission line to emulate the accumulated CD in practice.

The outputs of EDFA2 (signal) and VOA1 (noise) are further
combined through a 3-dB optical coupler. One of the outputs is
used for the optical spectrum analyzer (OSA) to measure the
OSNR, while the other one is first injected into TBPF2 to re-
move the out-of-band ASE noise. Then, the eye diagrams are
captured by a 22.5-GHz DCA after controlling the received op-
tical power at 3 dBm through VOA3. Some of the captured eye
diagrams with chosen parameters are listed in Fig. 3. Here, six
parameters are selected for joint monitoring (PAM order, 3 to 8;
BR, 25 to 27 GBd; PS coding rate, 0.8 to 1; ROF, 0.1 to 0.5;
OSNR, 25 to 40 dB; CD, −120 to 0 ps∕nm). It is worth noting
that there are two main reasons why the range of the negative
CD value of TDCM is used. (1) The adjustable range of negative
CD value is larger, which can emulate a larger dispersion
accumulation. (2) Since dispersion only affects the phase of
the signal and causes pulse broadening, the impact of positive
or negative CD values on the eye diagram should be similar.

It is equally suitable for demonstrating the potential of ML
for dispersion classification. Particularly, the small monitoring
range of BR takes the OH into account for various FEC coding.
In the inter- and intra-DC applications, different FEC encoders
are usually selected with different OHs. Therefore, to achieve a
given bit rate under different OHs, slightly adjusting the BR is
needed. The OHs of different FEC encoders could be further
obtained from the classification of the BR. Besides, the achiev-
able information rate (AIR) of PS follows the equation:

AIR ¼ N ×

�
−XM

i¼1

�
1

M
× log2

1

M

��
¼ N × log2 M; (1)

where M is the order of PAM signals, log2 M represents the
number of bits/symbols of the uniform PAM signals, and N
(0.8 to 1) is the coding rate needing to be monitored. N refers
to the multiple of the AIR of the probabilistic-shaped signal
relative to that of the uniform signal. In PS, the probability of
amplitudes is commonly generated according to the Maxwell–
Boltzmann (MB) distribution, as shown in Eq. (2). Therefore,

Fig. 2 (a) Experimental setup used to collect eye diagrams. ASE, amplified spontaneous emis-
sion; TBPF, tunable bandpass filter; EDFA, erbium-doped fiber amplifier; VOA, variable optical
attenuator; DSP, digital signal processing; DAC, digital-to-analog converter; TDCM, tunable
dispersion compensation module; PD, photodiode; OSA, optical spectrum analyzer; DCA, digital
communication analyzer. (b) The structure of the VGG-based CNN model for classification. Conv,
convolutional; BN, batch normalization; MP, max pooling; FC, fully connected.

Fig. 3 Eye diagrams of PAM signals with different MFs, BRs, PS, ROFs, OSNR, and CD.
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the entropy rate of the PS PAM signal could be expressed in
Eq. (3). Since the entropy rate should be numerically equal to
AIR, the expression for N could be further obtained as shown
in Eq. (4),

PXðxÞ ¼
e−λx2P

x0∈X e
−λx02 fX ¼ ½�1;�3;…;�ðM − 1Þ�g; (2)

HðXÞ ¼−X
x∈X

PXðxÞlog2PXðxÞ fX¼ ½�1;�3;…;�ðM− 1Þ�g;

(3)

N ¼−P
x∈X PXðxÞlog2PXðxÞ

log2M
fX ¼ ½�1;�3;…;�ðM− 1Þ�g:

(4)

The chosen interval of different parameters also is shown in
Fig. 3: three parameters contain four values, and the other three
contain three values. Meanwhile, 10 images are collected for
each class so that there is a total of 1728 ð43 × 33Þ classes and
17,280 images in the data set.

2.2 Algorithms of ML

All collected images are then divided into training (70%) and
testing (30%) sets for classification based on ML including
three traditional ML methods (SVM, KNN, and DT) and three
modern CNN models (VGG-based, ResNet, MobileNetV3, and
EfficientNetV2) for comparison.

2.2.1 Traditional ML methods

SVM can be defined as a linear classifier with the largest margin
in a high-dimensional feature space, aiming at finding the hy-
pothesis space that can correctly divide the training set.51 It is a

popular method for solving small and medium data samples and
nonlinear, high-dimensional classification problems. An impor-
tant property of SVM is that most of the training sets do not need
to be retained, and the final model is only related to the support
vector after the training is completed. As a supervised learning
method, DT uses information entropy as a measure to construct
a tree structure with the fastest decrease in entropy. It uses train-
ing data to establish a model based on the principle of minimiz-
ing the loss function and uses the decision model to classify new
data sets.53 The advantage of DT over the other pattern recog-
nition techniques is the interpretability of the constructed model
consisting of feature selection, DT generation, and pruning.
The main idea of KNN is using principal component analysis
to extract the features. For an n-dimensional input vector, it
corresponds to a point in the feature space, and the output is
the label corresponding to the feature vector. After inputting the
unlabeled data, KNN algorithms compare it with the feature cor-
responding to the data in the data set, and then extract the label
with the closest feature, which is called the “nearest neighbor.”
Finally, the class with the most occurrences among the k most
similar data is selected as the classification result.52 The GBDT
model is an additive model, which trains N regression trees se-
rially and finally adds up the results of the N regression trees,
thus obtaining a strong learner. It is a tree ensemble method that
builds a DT learner at a time by fitting the gradients of the re-
siduals of the previously constructed tree learners.54 In these tra-
ditional ML methods, the color histograms of RGB combined
with a histogram of oriented gradients (HOGs) are used as the
features. The color histograms mainly contain color information
of the input images, while HOG contains contour information of
the images. In these parameters, the choice of “pixels per cell” in
HOG could greatly affect accuracy. Figure 4 lists the HOG and
color histograms corresponding to different pixels per cell and
MFs. The colored lines in the color histograms represent the
gray-scale distribution under the corresponding red, green,
and blue channels. The range of gray-scale range is 0 to 255.

Fig. 4 Features and parameters used in traditional ML methods (KNN, SVM, DT, and GBDT).
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It can be clearly seen that the contour is clearer when there are
fewer pixels in each cell, but the number of features would be
more, increasing the computational cost. Here, the 16 pixels ×
16 pixels per cell are chosen for KNN and SVM, corresponding
with 12,996 features. Therefore, by adding the number of
features in color histograms (256 × 3), the total length of the
features used is 13,764. As for DT and GBDT, fewer features
show better accuracy in classification tasks. So, the 64 pixels ×
64 pixels per cell are chosen for DT and GBDT, corresponding
with 576 features, and the total length of the features used is 1344.
The corresponding selected parameters are shown in Table 1.

2.2.2 Modern CNN models

Due to different network architectures and hyperparameter
choices, the performance of CNN will vary greatly. After much
trial-and-error and research in previous works, numerous refined
modern CNN models debuted. They have different layer struc-
tures and combinations to achieve higher accuracy while also
further reducing the computing resources. Here, a VGG-based
model is mainly used. The commonly used ResNet-18, the light-
weight MobileNetV3, and the recent EfficientNetV2 are also
under consideration. In addition, before training the CNN mod-
els, the images need to be preprocessed. Data augmentation is
first implemented to enlarge the data set for all the models,
including the center cropping and color jitter. The image is

cropped to a size of 320 × 320 × 3 first, and then a color jitter
is performed. Finally, the image processed by color jitter is used
together with the original cropped image as the data set. The
input eye diagrams are then normalized using the mean and
standard deviation to enhance the data’s responsiveness to the
activation function.

For a typically VGG-based block, it includes a multiple con-
volutional (Conv) layer, a batch normalization (BN) layer, a
max pooling (MP) layer, and an activation function,55 as listed
in Fig. 5. In the proposed technique, we used a VGG-based
model with four blocks, as shown in Fig. 2(b). Compared to
the commonly used VGG-11 model, here we reduce the number
of Conv and MP layers by half, achieving a much better trade-
off between accuracy and computational cost. Moreover, the
kernel size of each Conv layer is also shrunk by 2 to 4 times.
Through further optimization, the number of neurons in the
output layer of the traditional VGG-11 model is finally reduced
from 512 to 120 in our VGG-based model, enabling more ef-
ficient training. The 3 × 3 Conv layers with different channels
are chosen in each block; the details of each layer are listed in
Table 2. The BN layer is used for speeding up the convergence
of the network along with avoiding the vanishing gradient prob-
lem. The following 2 × 2MP layer is utilized to half the size of
images in height and width, and the rectified linear unit (ReLU)
is chosen as a nonlinear activation function. The classifier is

Table 1 Parameters used in hog and color histograms.

Method Input image size

HOG Color histogram

Feature lengthOrientation Pixels per cell Cells per block Bin Range Channel

KNN, SVM 320 × 320 × 3 9 16 × 16 2 × 2 256 0 to 255 3 (RGB) 13,764

DT, GBDT 320 × 320 × 3 9 64 × 64 2 × 2 256 0 to 255 3 (RGB) 1344

Fig. 5 Typical algorithm architectures applied in the VGG-basedmodel, ResNet-18, MobileNetV3,
and EfficientNetV2. PW, point-wise; DW, depth-wise.
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composed of three fully connected (FC) layers, flattening, and
memorizing the data. The soft-max algorithms are used in
the last FC layer for classification problems. In addition,
several hyperparameters are also optimized for a better perfor-
mance as well as a higher training speed. Backpropagation and
stochastic gradient descent are chosen as the optimizer to train
the model, with a learning rate of 0.00092 and a momentum
of 0.9.

With the network depth increasing, the prediction accuracy
of the deeper network might get saturated and then degrade
rapidly. This degradation occurs in both the training set and the
test set, indicating that it is not due to overfitting. This may be
caused by the gradient vanishing. Specifically, the weights of
hidden layers closer to the input layer update slowly as they ap-
proach the input layer. Moreover, even when deeper networks
start to converge, a degradation problem emerges. For instance,
the current number of layers may be optimal for the model.
Increasing the number of layers requires maintaining the same
performance by ensuring that the input and output of the added
layers remain unchanged, effectively implementing identity
mapping. However, the model struggles to learn this identity
mapping, which is a primary factor contributing to performance
degradation. To overcome the degradation problem, ResNet was
introduced with the basic block shown in Fig. 5. Instead of each
directly fitting a desired underlying mapping, we explicitly
make these layers fit a residual mapping. In general, the desired
underlying mapping is denoted as HðxÞ, and x represents the
input features. Mapping used here refers to a kind of function
representing a processing of the input features. In ResNet, it is
recast into FðxÞ þ x and makes the residual layers fit the map-
ping of FðxÞ ¼ HðxÞ − x. It is easier to optimize the residual
mapping than the original one. Here, the typical ResNet-18 with
17 Conv layers and 1 FC layer is selected for classification. The
details of the network can be found in Ref. 56.

MobileNetV3 is a lightweight model with fewer parameters
and computations, which is achieved by the MBConv blocks
depicted in Fig. 5. An MBConv is based on separable
convolution containing (1 × 1 ×M × N) point-wise (PW) and
(K × K × 1 × N) depth-wise (DW) convolution. M represents
the number of channels, while N and K represent the size and

the number of convolution kernels, respectively. Therefore,
the computation reduction of the separable convolution used
in the MBConv block over the regular one can be described as

H ×W × C × N × 12 þH ×W × N × 1 × K2

K × K × C × N ×H ×W
¼ 1

K2
þ 1

C
;

(5)

where the size of the input is described as ðH;W;CÞ.
Meanwhile, MobileNetV3 introduces a squeeze-and-excitation
(SE) layer to extract the correlation features between channels
after performing DW convolution. A linear PW layer is also
used at the end of the block, which differs from the regular
PW layer in that it removes the activation function. There
are two new MobileNet models proposed in Ref. 57, and the
MobileNetV3-S is chosen here with fewer layers.

The recent EfficientNetV2 utilizes the newly emerged
Fused-MBConv block to achieve more effective training. In
the Fused-MBConv block, the PW and DW convolution in
the original MBConv block are replaced with a regular Conv
layer to fully utilize modern accelerators, as shown in Fig. 5.
Meanwhile, the neural architecture search is used to search for
the different combinations of MBConv and Fused-MBConv
blocks to achieve the best trade-off between training speed
and accuracy. Besides, EfficientNetV2 prefers smaller 3 × 3
kernel sizes, but that means more layers should be added to
compensate for the reduced receptive field. The searched model
EfficientNetV2-S is considered in the comparison here, accord-
ing to Ref. 58.

3 Results
In the first instance, we compared the classification accuracies of
VGG-based CNN with the ones of the other three traditional ML
methods (SVM, DT, and KNN) under different parameter com-
binations. Furthermore, we adopted four modern CNN models
(VGG-based, ResNet-18, MobileNetV3-S, and EfficientNetV2-S)
to achieve a joint classification of all six parameters and explore
the most cost-efficient method.

Table 2 Structure of the VGG-based model.

Input size Filter size Layer Output size

320 × 320 × 3 3 × 3 × 3 × 30 Conv.1 320 × 320 × 30

320 × 320 × 30 2 × 2 × 30 MP.1 160 × 160 × 30

160 × 160 × 30 3 × 3 × 30 × 60 Conv.2 160 × 160 × 60

160 × 160 × 60 2 × 2 × 30 MP.2 80 × 80 × 60

80 × 80 × 60 3 × 3 × 60 × 80 Conv.3 80 × 80 × 80

80 × 80 × 80 2 × 2 × 80 MP.3 40 × 40 × 80

40 × 40 × 80 3 × 3 × 80 × 120 Conv.4 40 × 40 × 120

40 × 40 × 120 2 × 2 × 120 MP.4 20 × 20 × 120

48,000 48,000 × 4096 FC.1 4096

4096 4096 × 4096 FC.2 4096

4096 4096 × N FC.3 N

N, number of classes; Conv, convolutional layer; MP, max pooling layer; BN layer and ReLU in the structure do
not change the size of the output; FC, fully connected.
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3.1 VGG-Based CNN and Traditional ML Methods

First, the single-parameter classification tasks of each model are
tested, including OSNR, CD, ROF, PS, BR, and MF. For in-
stance, when monitoring OSNR, the remaining five parameters
are randomly combined. In this case, the designed VGG-based
CNN is used as the comparison model; the results are presented
in Table 3 for a clearer comparison. It is evident that KNN,
SVM, and VGG-based CNN perform well in all single-param-
eter classification tasks, achieving accuracy above 95%. In the
classification tasks of PS and MF, all ML methods exhibit high
accuracy, indicating that these two parameters have distinct and
easily distinguishable characteristics. These results can also be
observed from the eye diagrams depicted in Fig. 3. MF corre-
sponds to the number of eyes in eye diagrams, while PS corre-
sponds to the probability of occurrence of different amplitudes,
both of which can be readily identified from the diagrams.
However, the classification accuracy of DT and GBDT for some
parameters is not satisfactory. Therefore, for these parameters,
the confusion matrix is provided for DT and GBDT in Fig. 6 to
facilitate a more detailed analysis. Regarding DT, in the OSNR
task, adjacent OSNR values are more likely to be confused

as OSNR increases, particularly for 35 and 40 dB. In the CD
task, classification failures mainly occur between −40 and
−80 ps∕nm. For the ROF task, the slight difference between
shaped waveforms at ROF of 0.1 and 0.2 results in a higher
likelihood of confusion, as is evident from the accuracy scores.
In the BR task, a 1-GBd variation corresponds to 1.5 ps in the
time domain. Due to the slight difference in bit period, the
probability of misclassification is higher, with the probabilities
of being classified into other classes hovering around 20%. The
effects caused by BR change on eye diagrams are relatively
weak especially when values of ROF and OSNR are small,
which also increases the difficulty of classification. Compared
to DT, GBDT demonstrates better accuracy in each single-
parameter classification task due to gradient-based calculations
and fitting. However, the accuracy for the BR task remains
relatively low. The confusion matrix reveals that the main chal-
lenge lies in distinguishing between 26 and 27 GBd.

Then, in order to further test the performance of each method
on multiparameter classification, all six parameters except for
the MF are divided into two sets: digital signal parameters
(PS, ROF, and BR) and optical link parameters (OSNR and
CD), corresponding to 27 (33) and 16 (42) classes, respectively.

Table 3 Accuracy of single-parameter classifications of different ML methods.

Method OSNR (%) CD (%) ROF (%) BR (%) PS (%) MF (%)

KNN 99.44 99.92 95.58 95.41 99.96 100

DT 92.03 92.48 78.88 61.71 99.54 95.81

SVM 99.32 99.78 97.02 97.31 99.92 100

GBDT 99.61 98.82 95.41 88.37 99.98 99.81

VGG-based CNN 99.01 100 98.7 99.21 100 100

CD, chromatic dispersion; ROF, roll-off factor; BR, baud rate; PS, probabilistic shaping; MF, modulation format.

Fig. 6 Confusion matrices of DT and GBDT for OSNR, CD, ROF, and BR classification tasks.
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The best learning parameters have been chosen for different
methods. Figures 7(a) and 7(b) show the accuracy of jointly
monitoring two optical link parameters and three digital signal
parameters under different MFs and learning methods. It can be
clearly seen that in jointly monitoring two optical link param-
eters (16 classes), the other four learning methods work well
except for the DT, achieving higher accuracy of more than
97%. With the increase of PAM order, the accuracy of each
method is reduced. That is because the higher PAM order is
more sensitive to the changes in the parameters, resulting in
a more distorted eye diagram, which is difficult to identify.
However, the accuracy of GBDT significantly drops when
jointly monitoring three digital signal parameters (36 classes).
This outcome aligns with the accuracy of single-parameter
classification tasks and the corresponding confusion matrix pre-
sented in Table 3 and Fig. 6. Both GBDT and DT exhibit rel-
atively low accuracy in the classification of BR. Furthermore,
the decrease in accuracy for DT and GBDT in the joint monitor-
ing of three digital signal parameters can also be attributed to the
increase in the number of classes. In contrast, VGG-based CNN,
SVM, and KNN outperform the other two methods in both joint

monitoring tasks. Notably, the classification accuracy of VGG-
based CNN and SVM is less affected as the PAM order in-
creases, whereas KNN is more significantly influenced by the
MF in the joint monitoring of digital signal parameters.

Next, the complexity of the classification is increased to
432 classes for each MF under different combinations of all
the digital signal and optical link parameters. For different ML
methods, different parameters are optimized. In the KNNmodel,
multiple trainings are performed by sweeping models with
different k values, and the model with the highest accuracy is
ultimately selected. Similarly, in the DT model, the best combi-
nation of parameters is obtained by sweeping the max depth and
max features. Max depth is related to the number of layers of
DT, and max features refer to the maximum number of features
considered during the division of DT. As for SVM, a linear
SVM classifier is chosen, and the error penalty C is optimized
in different conditions. For GBDT, the primary parameters
being swept are the maximum depth, learning rate, and number
of iterations, all aimed at achieving better accuracy. The main
parameter selections for the aforementioned methods are pre-
sented in Table 4. As shown in Fig. 7(c), under more complex

Fig. 7 Accuracy of joint monitoring parameters with different ML methods for (a) digital signal
parameters and (b) optical link parameters. (c) Accuracy for all the 432 classes for each MF with
different five-parameter combinations.
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conditions, the accuracy of SVM and KNN decreased from
93.52% to 85.90% and 99.85% to 89.2%, respectively, with
the increase of PAM orders. On the other hand, the VGG-based
CNN consistently maintained an accuracy of over 97% for
all conditions, surpassing the other four methods. Similarly,
Fig. 7(c) shows that compared with SVM and VGG-based
CNN, the performance of KNN is significantly affected by
the MF. With an increase in PAM order from 3 to 8, the accuracy
of KNN correspondingly dropped by ∼10%.

Finally, when the complexity of the classification is in-
creased to 1728 classes under different combinations of all
the six parameters including MFs, the advantages of CNN over
traditional ML become more obvious. The main parameter
selections of the traditional ML methods are also shown in
the last column of Table 4. From Fig. 8, it can be clearly seen
that under the most complex conditions, 97.61% accuracy is
achieved by VGG-based CNN, which is ∼7% higher than
the highest accuracy among the other four methods. In sum-
mary, with the increase of classification classes, the accuracy
of each method decreases, and it is more obvious for traditional
ML methods. In contrast, VGG-based CNN exhibits better
robustness in both single-parameter monitoring and multi-
parameter joint monitoring, consistently achieving an accuracy
above 97%. Nevertheless, in the joint monitoring of a small
number of parameters, some traditional ML methods, such
as SVM, KNN, and GBDT, are also competitive options.

Among the four traditional ML methods, KNN outperforms
the other three methods, reaching an accuracy of 90.96%, even
in the most complex six-parameter joint monitoring scenario.
However, the performance of KNN is more susceptible to the
MF. As for DT and GBDT, they perform less well on tasks that
jointly monitor more parameters. This may be due to the un-
suitability of the feature combination of HOG and color histo-
grams for these two methods. Therefore, for DT and GBDT,
in order to achieve higher accuracy, more appropriate features
should be found and selected. In fact, taking more attempts
at feature selection and parameter optimization could indeed
improve the accuracy of traditional ML methods, but the work-
load and time consumption of manual feature selection are
also issues worthy of attention. In real-time optical network
monitoring, accurately identifying the most suitable features
is challenging, highlighting the importance of automatic fea-
ture extraction offered by DL methods. Therefore, due to the
higher accuracy and the ability to adapt to various simple and
complex scenarios, CNN represents a better choice for accu-
rate performance monitoring of a PAM-based channel.

In addition, to address the feature selection challenge in the
GBDT model, a CNN followed by a GBDT model is employed
for comparison. Initially, the designed VGG-based CNN is used
for feature extraction, and the output features are then processed
using GBDT instead of FC layers. The size of output features is
4096 × 1. Table 5 shows the comparison of the accuracy of
CNN, CNN+GBDT, and GBDT under different classification
tasks. “All class” in Table 5 refers to the joint monitoring of
all six parameters. After feature extraction by CNN, the accu-
racy for monitoring BR and ROF is significantly improved
using GBDT. Therefore, in the joint monitoring of three digital
signal parameters, CNN + GBDT achieves an accuracy im-
provement of nearly 7% compared to using GBDT alone.
When performing six-parameter joint monitoring, the accuracy
of CNN + GBDTalso sees substantial improvement, although it
still falls short of using CNN alone. This could be attributed to
the relatively large number of classes (1728) for GBDT. In
addition, utilizing CNN + GBDT involves training both the
CNN and GBDT models, which results in a longer training time
compared to using FC layers for classification. It needs to be
admitted that by changing the output feature length of CNN,
the performance of CNN + GBDT could be further optimized,
but it needs a long time to do a grid search to find the best
feature length. Therefore, using CNN seems to be a more
effective choice for multiparameter performance monitoring in
comparison.

Table 4 Parameters selected of traditional ML methods.

Method PAM3 PAM4 PAM6 PAM8 All classes

KNN k ¼ 3 k ¼ 3 k ¼ 4 k ¼ 3 k ¼ 5

DT MD = 400 MD = 400 MD = 400 MD = 400 MD = 400

MF = 300 MF = 400 MF = 300 MF = 900 MF = 600

SVM C ¼ 10 C ¼ 8 C ¼ 8 C ¼ 10 C ¼ 10

GBDT LR = 0.1 LR = 0.1 LR = 0.1 LR = 0.1 LR = 0.1

MD = 6 MD = 6 MD = 6 MD = 7 MD = 7

iter = 350 iter = 400 iter = 370 iter = 420 iter = 500

MD, max depth; MF, max features; LR, learning rate; iter, iterations; C, error penalty.

Fig. 8 Accuracy for all 1728 classes with different six-parameter
combinations using DT, GBDT, KNN, SVM, and VGG-based
CNN.
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3.2 Comparisons among Four Modern CNN Models

Accuracy curves of the first 30 epochs of each model are plotted
in Fig. 9(a). Analysis shows that the accuracy of all the models
can converge to a stable value within 30 epochs, where the con-
vergence rate is related to the learning rate.

Figure 9(b) uses the box plot to show the accuracy distribu-
tion of the last 150 epochs of each CNN model. For the results
of each model, the upper and lower ends of the black solid line
represent the maximum and minimum of the data points, respec-
tively, while the points that are not within the range are regarded
as outliers. The two sides of the box are the upper and the lower
quartile, and the dashed line within the box indicates the
median. The dotted line on the right represents the normal dis-
tribution fitted according to the data points. Basically, all these
four models can reach a high accuracy of>96% for jointly mon-
itoring all six parameters of the PAM-based channel. Among
them, EfficientNetV2-S takes the leading role, with an accuracy
distribution centered on around 97.5%, while ResNet-18 seems
to be stabler, with smaller fluctuations of data points.

Some key parameters reflecting the complexity of the
models are also compared in Table 6. FLOPs correspond to

the computation time, and the parameters correspond to the con-
sumption of resources. The FLOPs of the convolutional layers
can be calculated by Eq. (3), and the FLOPs of FC layers are
expressed in Eq. (4),

FLOPsCNN ¼ 2 × ðCi × kw × khÞ × Co ×W ×H; (6)

FLOPsFC ¼ ð2 × IÞ ×O; (7)

where Ci and Co refer to the channels of input and output, re-
spectively.H andW represent the length and width of the output
feature map, kw and kh are the length and width of the convo-
lution kernel, and I and O represent the number of the input and
output neurons, respectively.59 Although EfficientNetV2-S has
the highest accuracy, its FLOPs and parameters are the largest
among the four models, meaning greater resource consumption
and longer computation time. In contrast, MobileNetV3-S real-
izes fewer parameters and FLOPs using the MBConv block.
Meanwhile, the VGG-based model designed here utilizes fewer
Conv layers to achieve the least memory usage. Neither of these
two methods comes at the expense of accuracy. Therefore,
MobileNetV3-S and the designed few-layer VGG-based model

Table 5 Accuracy of classifications of GBDT, VGG-based CNN, and VGG-based CNN + GBDT.

Method OSNR (%) CD (%) ROF (%) BR (%) PS (%) MF (%)
OSNR and
CD (%)

ROF and PS
and BR (%)

All classes
(%)

CNN 99.01 100 98.7 99.21 100 100 99.32 99.12 97.61

CNN + GBDT 99.16 99.61 98.81 98.1 100 100 99.53 98.11 83.13

GBDT 99.61 98.82 95.41 88.37 99.98 99.81 99.03 91.47 56.69

CD, chromatic dispersion; ROF, roll-off factor; BR, baud rate; PS, probabilistic shaping; MF, modulation format.

Fig. 9 (a) Accuracy curves and (b) distributions of VGG-based model, ResNet-18, MobileNetV3-
S, and EfficientNetV2-S.

Table 6 Computational cost per image of the modern CNN models.

Model name Input size FLOP Parameter Memory

MobileNetV3-S 224×224×3 64.36 M 3.28 M 18.44 MB

VGG-based 224×224×3 573.13 M 120 M 15.00 MB

Resnet-18 224×224×3 1.82 G 12.06 M 28.53 MB

EfficientNetV2-S 224×224×3 2.9 G 23.41 M 139.00 MB

FLOPs, floating point operations; memory, the usage of video memory.
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seems to be more cost-efficient for jointly monitoring all six
parameters. It further indicates that for joint monitoring of
PAM channels, fewer Conv layers are sufficient for feature ex-
traction. In other words, it seems that a network with fewer
layers including MBConv and Fused-MBConv blocks can be
designed to achieve the best trade-off between accuracy and
computational cost.

4 Discussion
In previous results, the potential of single-parameter as well as
up to six-parameter joint monitoring of PAM signals using dif-
ferent CNN models has been demonstrated. However, it should
be noted that the number of the final output neurons N of each
CNN model needs to be changed according to the classes of
the task. In addition, the trained model can only perform a spe-
cific classification task and requires retraining for other moni-
toring tasks. This lack of flexibility makes it challenging to
apply the model to scenarios with broader requirements. In com-
munication networks, there is a greater need for a model that can
perform joint monitoring of multiple parameters while simulta-
neously monitoring each single parameter. To address these lim-
itations, an MTL model combined with CNN is designed here to
improve the applicability of the network. As a DL model, MTL
has been applied in many applications.60 Compared to single-
task learning, MTL enables simultaneous monitoring of multi-
ple single-parameter tasks. Common parameters are shared
among different tasks in MTL, and the losses of different tasks
jointly update the shared layer. The MTL model used in this
work has six tasks, which are MF, BR, CD, OSNR, ROF, and
PS, respectively. Therefore, the output neurons of six-parameter
joint monitoring in MTL could be reduced from 1728 to 21. The
designed structure is shown in Fig. 10.

Before training the model, the input image undergoes prepro-
cessing. Data augmentation is implemented to enlarge the data
set for the model, the color jitter, random cropping, and center
cropping with a size 320 × 320 × 3 are utilized to increase data
set diversity. Following that, the input eye diagrams are normal-
ized using mean and standard deviation to make the data better
respond to the activation function. Next, the data set (1728
classes) is divided into 80% for training (1382 random classes)
and 20% for testing (346 classes). When all the six subtasks are
classified correctly, it means that the corresponding six-param-
eter joint monitoring is correct. Consequently, the MTL model
can perform joint monitoring of multiple parameters while

simultaneously monitoring each single parameter. In this work,
the lightweight MobileNetV3-Small is selected for the convolu-
tional processing of MTL to achieve more efficient training. The
specific parameters utilized in the MobileNetV3-Small are also
shown in Table 7.

For classification tasks, cross-entropy is usually used as the
loss function, as shown in Eq. (8),

L ¼ 1

N

XN
i¼1

Li ¼ − 1

N

XN
i¼1

XM
c¼1

yic logðpicÞ; (8)

where N is the number of samples and c represents the specific
class in the task. yic is the label of task and pic denotes the pre-
dicted possibility. So, the final loss function of the MTL model
can be expressed as

L ¼
Xk
i¼1

λiLi; (9)

where k represents the total number of tasks in the MTL model,
and λi is the weight of the ith task in the loss function. λi could
be adjusted to change the importance of each task in the MTL
model by further searching the grid. The loss weights corre-
sponding to six tasks are listed in Table 8.

Figure 11 shows the accuracy comparison between VGG-
based CNN and MTL. Both models achieve high accuracy
(>97%) in all single-parameter classification tasks. Moreover,
in the six-parameter joint monitoring, although MTL exhibits
slightly lower accuracy than VGG-based CNN, it still maintains
a high accuracy, exceeding 95%. The accuracy of MTL in vari-
ous monitoring tasks is comparable to that of CNN, while offer-
ing the advantage of not requiring training on all 1728 classes.
In addition, MTL allows for simultaneous monitoring of both
single parameters and multiple parameters, providing greater
flexibility compared to a CNN designed for a single task.
Furthermore, the MTL model presents opportunities for further
optimization. First, the structure of the FC layer corresponding
to multiple tasks can be further optimized to achieve better
accuracy. This may involve increasing the number of FC layers
or modifying the output neurons of hidden layers. Second,
the weights of loss functions can be updated using GradNorm,
a method that dynamically adjusts the weight of each loss func-
tion, saving time compared to grid searching.61

Fig. 10 Structure of MTL model combined with MobileNetV3-Small.
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5 Conclusion
We have proposed utilizing an eye diagram to monitor multiple
performance parameters of an IMDD channel in optical commu-
nication systems using CNN-based methods. Our designed
VGG-based CNN model with fewer Conv layers can achieve
joint monitoring of both digital signal parameters and optical
link parameters of the PAM-based IMDD communication sys-
tem with higher accuracy and less memory usage. Compared to
the traditional ML methods, the proposed VGG-based CNN

model can automatically extract features and successfully deal
with a variety of complex monitoring issues. With a high accu-
racy of 97.16% for up to six parameters, joint monitoring, in-
cluding BR, PS, ROF, OSNR, CD, and MFs, the VGG-based
CNN model shows greater potential than the other traditional
ML methods in various applications of both static and dynamic
optical networks.

Furthermore, we have also compared four CNN models,
including the proposed VGG-based model, ResNet-18,
MobileNetV3, and EfficientNetV2. With less computational

Table 8 Weight of the tasks in the loss function.

Task BR MF ROF PS OSNR CD

Weight 1.01 0.81 0.99 0.78 0.98 0.79

Fig. 11 Accuracy of different monitoring tasks using MTL and VGG-based CNN.

Table 7 Structure of MobileNetV3-Small.

Input Operator Out channel SE NL Stride

320×320×3 Conv 3×3 16 — HS 2

160×160×16 MBConv 3×3 16 Yes RE 2

80×80×16 MBConv 3×3 24 — RE 2

40×40×24 MBConv 3×3 24 — RE 1

40×40×24 MBConv 5×5 40 Yes HS 2

20×20×40 MBConv 5×5 40 Yes HS 1

20×20×40 MBConv 5×5 40 Yes HS 1

20×20×40 MBConv 5×5 48 Yes HS 1

20×20×48 MBConv 5×5 48 Yes HS 1

20×20×48 MBConv 5×5 96 Yes HS 2

10×10×96 MBConv 5×5 96 Yes HS 1

10×10×96 MBConv 5×5 96 Yes HS 1

10×10×96 Conv 1×1 576 Yes HS 1

10×10×576 Pooling 7×7 576 — — 1

1×1×576 Conv 1×1, NBN 1280 — HS 1

SE, whether there is a squeeze-and-excite in that block; NL, nonlinearity used; HS, H-swish; RE, ReLU; NBN,
no batch normalization.
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cost, the VGG-based model and MobileNetV3 reduce the hard-
ware requirements. For jointly monitoring all six parameters of
the PAM-based channel, the EfficientNetV2 with the highest
accuracy of 97.55% and the lightweight MobileNetV3 with the
fewest FLOPs also provide bright ideas for further optimization
of the network. For more complex IMDD-based DC networks
using PAM signals, a cost-efficient CNN with fewer layers with
an optimal combination of MBConv and Fused-MBConv blocks
can be further designed to achieve higher accuracy without the
increment of computational resources.

Finally, an MTL model combined with MobileNetV3 is
designed to address the limitations of the VGG-based CNN and
provide more flexibility for applications. The model achieves
high accuracy (>95%) in all classification tasks. Furthermore,
MTL offers the advantage of not requiring training on all 1728
classes, enabling simultaneous monitoring of both single param-
eters and multiple parameters by calculating the gradient of
multiple losses. This enhanced flexibility surpasses that of a
CNN designed for a single task, highlighting its potential in
various monitoring scenarios.
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